Nonlinear spectral management: linearization of the lossless fiber channel.

نویسندگان

  • Jaroslaw E Prilepsky
  • Stanislav A Derevyanko
  • Sergei K Turitsyn
چکیده

Using the integrable nonlinear Schrödinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called "eigenvalue communication" idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

A Paired Quasi-linearization on Magnetohydrodynamic Flow and Heat Transfer of Casson Nanofluid with Hall Effects

Present study explores the effect of Hall current, non-linear radiation, irregular heat source/sink on magnetohydrodynamic flow of Casson nanofluid past a nonlinear stretching sheet. Viscous and Joule dissipation are incorporated in the energy equation. An accurate numerical solution of highly nonlinear partial differential equations, describing the flow, heat and mass transfer...

متن کامل

Linearization of M-LINC Systems Using GMP and Particle Swarm Optimization for Wireless Communications

In this paper, an efficient algorithm for the efficiency maximization of the multilevel linear amplification using nonlinear components (M-LINC) systems is proposed regarding the linearity of the system. In this algorithm, we use the generalized memory polynomial (GMP) to provide a behavioral model for the power amplifier (PA) and calculate the power spectral density (PSD) of the output signal ...

متن کامل

Accurate Estimation of the Non-Linearity of Input-Output Response for Color Digital Cameras

Many color digital camera systems exhibit a non-linearity between the input intensity and the output response of the color channels. Although the sensor (CCD) material responds to light intensity in a linear way a non-linearity is often added by the camera manufacturer. Recent research has highlighted that in order to be able to estimate this nonlinearity (sometimes termed gamma) it is necessar...

متن کامل

Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion compon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2013